17 research outputs found

    An Optimal Time for Treatment-Predicting Circadian Time by Machine Learning and Mathematical Modelling

    Get PDF
    Tailoring medical interventions to a particular patient and pathology has been termed personalized medicine. The outcome of cancer treatments is improved when the intervention is timed in accordance with the patient's internal time. Yet, one challenge of personalized medicine is how to consider the biological time of the patient. Prerequisite for this so-called chronotherapy is an accurate characterization of the internal circadian time of the patient. As an alternative to time-consuming measurements in a sleep-laboratory, recent studies in chronobiology predict circadian time by applying machine learning approaches and mathematical modelling to easier accessible observables such as gene expression. Embedding these results into the mathematical dynamics between clock and cancer in mammals, we review the precision of predictions and the potential usage with respect to cancer treatment and discuss whether the patient's internal time and circadian observables, may provide an additional indication for individualized treatment timing. Besides the health improvement, timing treatment may imply financial advantages, by ameliorating side effects of treatments, thus reducing costs. Summarizing the advances of recent years, this review brings together the current clinical standard for measuring biological time, the general assessment of circadian rhythmicity, the usage of rhythmic variables to predict biological time and models of circadian rhythmicity

    A tissue-based approach to selection of reference genes for quantitative real-time PCR in a sheep osteoporosis model

    Get PDF
    Background: In order to better understand the multifactorial nature of osteoporosis, animal models are utilized and compared to healthy controls. Female sheep are well established as a model for osteoporosis induced by ovariectomy, calcium and vitamin D low diet, application of steroids, or a combination of these treatments. Transcriptional studies can be performed by applying quantitative real time PCR (RT-qPCR). RT-qPCR estimates mRNA-levels of target genes in relation to reference genes. A chosen set of reference genes should not show variation under experimental conditions. Currently, no standard reference genes are accepted for all tissue types and experimental conditions. Studies examining reference genes for sheep are rare and only one study described stable reference in mandibular bone. However, this type of bone differs from trabecular bone where most osteoporotic fractures occur. The present study aimed at identifying a set of reference genes for relative quantification of transcriptional activity of ovine spine bone and ovine in vitro differentiated mesenchymal stromal cells (MSC) for reliable comparability. Methods: Twelve candidate reference genes belonging to different functional classes were selected and their expression was measured from cultured ovMSCs (n = 18) and ovine bone samples (n = 16), respectively. RefFinder was used to rank the candidate genes. Results: We identified B2M, GAPDH, RPL19 and YWHAZ as the best combination of reference genes for normalization of RT-qPCR results for transcriptional analyses of these ovine samples. Conclusion: This study demonstrates the importance of applying a set of reference genes for RT-qPCR analysis in sheep. Based on our data we recommend using four identified reference genes for relative quantification of gene expression studies in ovine bone or for in vitro experiments with osteogenically differentiated ovine MSCs

    Osteocytes Influence on Bone Matrix Integrity Affects Biomechanical Competence at Bone-Implant Interface of Bioactive-Coated Titanium Implants in Rat Tibiae

    Get PDF
    Osseointegration is a prerequisite for the long-term success of implants. Titanium implants are preferred for their biocompatibility and mechanical properties. Nonetheless, the need for early and immediate loading requires enhancing these properties by adding bioactive coatings. In this preclinical study, extracellular matrix properties and cellular balance at the implant/bone interface was examined. Polyelectrolyte multilayers of chitosan and gelatin or with chitosan and Hyaluronic acid fabricated on titanium alloy using a layer-by-layer self-assembly process were compared with native titanium alloy. The study aimed to histologically evaluate bone parameters that correlate to the biomechanical anchorage enhancement resulted from bioactive coatings of titanium implants in a rat animal model. Superior collagen fiber arrangements and an increased number of active osteocytes reflected a significant improvement of bone matrix quality at the bone interface of the chitosan/gelatin-coated titan implants over chitosan/hyaluronic acid-coated and native implants. Furthermore, the numbers and localization of osteoblasts and osteoclasts in the reparative and remodeling phases suggested a better cellular balance in the chitosan/Gel-coated group over the other two groups. Investigating the micro-mechanical properties of bone tissue at the interface can elucidate detailed discrepancies between different promising bioactive coatings of titanium alloys to maximize their benefit in future medical applications

    T Lymphocytes Influence the Mineralization Process of Bone

    Get PDF
    Bone is a unique organ able to regenerate itself after injuries. This regeneration requires the local interplay between different biological systems such as inflammation and matrix formation. Structural reconstitution is initiated by an inflammatory response orchestrated by the host immune system. However, the individual role of T cells and B cells in regeneration and their relationship to bone tissue reconstitution remain unknown. Comparing bone and fracture healing in animals with and without mature T and B cells revealed the essential role of these immune cells in determining the tissue mineralization and thus the bone quality. Bone without mature T and B cells is stiffer when compared to wild-type bone thus lacking the elasticity that helps to absorb forces, thus preventing fractures. In-depth analysis showed dysregulations in collagen deposition and osteoblast distribution upon lack of mature T and B cells. These changes in matrix deposition have been correlated with T cells rather than B cells within this study. This work presents, for the first time, a direct link between immune cells and matrix formation during bone healing after fracture. It illustrates specifically the role of T cells in the collagen organization process and the lack thereof in the absence of T cells

    An Optimized Approach to Perform Bone Histomorphometry

    Get PDF
    Bone histomorphometry allows quantitative evaluation of bone micro-architecture, bone formation, and bone remodeling by providing an insight to cellular changes. Histomorphometry plays an important role in monitoring changes in bone properties because of systemic skeletal diseases like osteoporosis and osteomalacia. Besides, quantitative evaluation plays an important role in fracture healing studies to explore the effect of biomaterial or drug treatment. However, until today, to our knowledge, bone histomorphometry remain time-consuming and expensive. This incited us to set up an open-source freely available semi-automated solution to measure parameters like trabecular area, osteoid area, trabecular thickness, and osteoclast activity. Here in this study, the authors present the adaptation of Trainable Weka Segmentation plugin of ImageJ to allow fast evaluation of bone parameters (trabecular area, osteoid area) to diagnose bone related diseases. Also, ImageJ toolbox and plugins (BoneJ) were adapted to measure osteoclast activity, trabecular thickness, and trabecular separation. The optimized two different scripts are based on ImageJ, by providing simple user-interface and easy accessibility for biologists and clinicians. The scripts developed for bone histomorphometry can be optimized globally for other histological samples. The showed scripts will benefit the scientific community in histological evaluation

    A computational analysis in a cohort of Parkinson’s disease patients and clock-modified colorectal cancer cells reveals common expression alterations in clock-regulated genes

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Increasing evidence suggests a role for circadian dysregulation in prompting disease-related phenotypes in mammals. Cancer and neurodegenerative disorders are two aging related diseases reported to be associated with circadian disruption. In this study, we investigated a possible effect of circadian disruption in Parkinson's disease (PD) and colorectal cancer (CRC). We used high-throughput data sets retrieved from whole blood of idiopathic PD (IPD) patients and time course data sets derived from an in vitro model of CRC including the wildtype and three core-clock knockout (KO) cell lines. Several gene expression alterations in IPD patients resembled the expression profiles in the core-clock KO cells. These include expression changes in DBP, GBA, TEF, SNCA, SERPINA1 and TGFB1. Notably, our results pointed to alterations in the core-clock network in IPD patients when compared to healthy controls and revealed variations in the expression profile of PD-associated genes (e.g., HRAS and GBA) upon disruption of the core-clock genes. Our study characterizes changes at the transcriptomic level following circadian clock disruption on common cellular pathways associated with cancer and neurodegeneration (e.g., immune system, energy metabolism and RNA processing), and it points to a significant influence on the overall survival of colon cancer patients for several genes resulting from our analysis (e.g., TUBB6, PAK6, SLC11A1).info:eu-repo/semantics/publishedVersio

    Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent

    No full text
    Abstract The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts

    DXA reference values of the humanoid sheep model in preclinical studies

    No full text
    Background Merino land sheep are a popular pre-clinical large animal model in research on systemic skeletal diseases such as osteoporosis. Interpretation of studies is difficult because many reference parameters are missing or not established. This study aims to determine the reference parameters of the skeletal system (peak bone mass = PBM, T-Score). A defined standard allows an easier comparison of the study data of the animal model with human studies (T-Score). Materials and methods A total of 116 Dual Energy X-ray Absorptiometry DXA measurements were performed on 74 untreated sheep. The average age of the animals was 57 months. The BMD, BMC, and fat content of the sheep were determined by the relevant human region of interest (ROI). From this, the PBM and from this the T-score for each of the animals were calculated. Results Using 682 DXA measurements BMD and BMC were determined to provide an indication to PBM. For BMD a significant correlation to the age of the animals was observed (p = 0.043). A significant correlation was also seen for BMC (B) (p ≤ 0.001). In the age-dependent analysis, a widespread of values above the linear regression line was measured for both BMD and BMC between the 50th and 90th months of life. From an age of about 90 months, a wider spread of values below the linear regression line was found, although the average values continued to rise. Discussion The evaluation of the 116 DXA measurements allowed the determination of the PBM for merino land sheep. With the help of the PBM, a T-score was calculated for each animal. The statistical analysis shows significant differences in BMD values between the different animal groups in each of the four ROIs investigated. Individual control or sham groups per study are therefore not sufficient. To improve comparability, an independent reference group should be established. Conclusion An independent reference group for PBM and a T-score was established from four to six-year-old animals. The bone density increases with the age of the animals. Around the fourth year of life, a first peak could be observed. Also, after the seventh year of life, a further peak with the beginning plateau phase was observed. When compiling a group of animals for an osteoporosis model, animals from the age of seven years should, therefore, be used

    Do Systemic Factors Influence the Fate of Nonunions to Become Atrophic? A Retrospective Analysis of 162 Cases

    No full text
    Introduction. Nonunions are a challenge for orthopedic surgeons. In hypertrophic nonunions, improvement of mechanical stability usually is the satisfactory treatment, whereas in atrophic nonunions improvement of the biological environment is most important. However, scientific evidence revealed that “avital” nonunions are not avascular and fibrous tissue contains cells with osteogenic potential. To find out if systemic factors suppress this intrinsic potential in atrophic nonunions, this study compares characteristics of hypertrophic with atrophic nonunion patients. Methods. We analyzed medical records of 162 surgically treated patients suffering from aseptic long bone nonunions. Atrophic and hypertrophic nonunions were distinguished by absence or presence of callus and calcification in the fracture gap. Mechanical implant loosening and patient characteristics such as age, gender, and body mass index were assessed. Fracture classification according to AO/OTA, open and closed fractures, and osteosynthesis were recorded. In addition, comorbidities and allergies between both groups were compared. Results. A higher number of hypertrophic nonunion patients were male with often allergies. Hypertrophic nonunion occurred more often after intramedullary nailing compared to atrophic nonunions. Atrophic nonunion patients being nonallergic were significantly older than nonallergic patients suffering from hypertrophic nonunions. In both atrophic and hypertrophic nonunion patients, age was lower in patients with accompanying injuries compared with age of patients with isolated fractures. Conclusion. Systemic factors influence development of nonunion types. In nonallergic patients, atrophic nonunions occur more often in the elderly. This manuscript is a first step to identify different factors which might influence the nature of nonunion. To enable nonunion treatment which is tailored to individual patient characteristics, further prospective studies with more sophisticated research methods are necessary

    Is Biofeedback through an Intra-Aural Device an Effective Method to Treat Bruxism? Case Series and Initial Experience

    No full text
    Biofeedback was reported as an effective concept for bruxism treatment, through increasing patient’s awareness of the habit. During bruxing both ear canals become tighter, therefore, an in-ear device can provide biofeedback. The in-ear device is fitted to the ear canal in physiological status, during bruxing the ear-canal tightens resulting in stress on the canal walls and unpleasant feeling. Subsequently, patients stop their bruxing habit. The aim of this study is to provide first clinical evidence that in-ear devices have a positive impact on relieving bruxism in patients. Despite the low number of patients, this early study was designed as a controlled prospective study. The trial included seven female patients with a median age of 47.3 years (23–64 years). Only two patients implemented their devices for eight and seven months, respectively. One patient reported a relief in her symptoms, like headaches and pain intensity during the night, by 50% after three month and 80% after six months. Despite the limited number of participants, the study reflects a potential of Intra-aural devices as effective biofeedback devices in treating bruxism
    corecore